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In this paper, we propose an approach for assigning an interest level to the goals of a plane-
tary rover.Assigning an interest level to goals allows the rover autonomously to transform and
reallocate the goals. The interest level is defined by data-fusing payload and navigation infor-
mation. The fusion yields an “interest map” that quantifies the level of interest of each area
around the rover. In this way the planner can choose the most interesting scientific objectives
to be analyzed, with limited human intervention, and reallocates its goals autonomously. The
Dezert–Smarandache Theory of Plausible and Paradoxical Reasoning was used for infor-
mation fusion: this theory allows dealing with vague and conflicting data. In particular, it
allows us directly to model the behavior of the scientists that have to evaluate the relevance
of a particular set of goals. The paper shows an application of the proposed approach to the
generation of a reliable interest map.

Nomenclature
A, B, C generic elements of the power set or hyperpower set
Bel belief function
D� hyperpower set of the frame �

I interesting hypothesis
m general basic belief number (gbba) or basic probability assignment (bpa)
m1, m2 gbba or bpa assigned by each expert
m12 combined gbba or bpa
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m′ bpa on the refined frame
NI not-interesting hypothesis
Pl plausibility function
u uncertainty value
X, Y, Z generic elements of the refined power set
2� power set of the frame �

δ discount owing to uncertainty
θ element (possible event) of a given frame of discernment
� frame of discernment
�ref refined frame of discernment

I. Introduction

BASED on the experience gathered with past Mars robotic missions, a number of future space missions envisage
the use of robots for the exploration of distant planets [1]. All of them have strong scientific requirements but the

poor knowledge of the environment where the robots will operate makes the definition of specific goals dependent
on contingent events and observations. If the allocation the goals is performed entirely on the ground, the robot will
have to wait for new instructions every time a new, unforeseen event occurs or a new set of scientific data is available.

Therefore, it would be desirable to have an autonomous system able to make decisions not only on how to reach a
given set of goals but also on which mission goals to select. Furthermore, the persistency of a mission goal may lead the
system to repeatedly re-plan to meet the goal though the goal is unreachable or has lost its original importance. Goal
transformation or goal reallocation is an important feature required in dynamic and rapidly changing environments
but can become extremely important also in poorly known environments or when exploration and discovery are the
main drivers of a mission [2]. For example, assume that, for a mission to Mars, a set of observations from space is
used to define a set of goals for a planetary rover. During the mission, however, the rover may find that the goals
are unreachable (e.g., if the goal were to collect a sample of a specific rock, the rock could be unreachable) or not
interesting anymore (e.g., a different rock may display more interesting features). Then, the ground control team,
together with the scientific community, would have to decide what to do. While the ground control team is devising
a new plan and a new set of goals the rover would remain idle waiting for instructions. To avoid this waiting time,
the idea is to adjust mission goals of the planner in addition to the adjustment of the plans themselves. Previous
works on goal transformation addressed terrestrial or military applications [2,3], and did not include the scientific
data coming from the payload in the reallocation process.

In this work, we propose the autonomous generation or reallocation of given mission goals in order to maximize
mission return. The aim is to have the most rewarding sequence of goals or the addition, deletion, modification of
goals depending on contingent events or discoveries. Payload information is integrated in the planning process to
make the rover mimicking the behavior of scientists. Goals are generated, modified or reallocated to maximize the
overall scientific return of the mission. A family of plans is then generated for each set of ordered goals and the most
reliable feasible plan of the most interesting set of goals is executed. Reliability is taken into account, together with
interest, in the process of choosing the plan to be executed [4]. The planner and the goal transformation algorithm
are part of a multilayer autonomous system called Wisdom. The Wisdom system is a nondeterministic, deliberative-
reactive system for rover autonomy in harsh, unknown environments. The system was developed and implemented
on a six wheeled prototype rover (named Nausicaa), as part of a study for the development of advanced systems for
space autonomy [5].

In this paper, we specifically present the approach used in Wisdom to generate an interest value through the data
fusion of navigation and payload data for an autonomous planetary rover. The definition of an interest value avoids
wild goal sequences for which only an empty set of actions is feasible (a plan with no steps), as only goals that are
interesting for the mission can be generated or transformed. In Wisdom, goals are extracted from a pool of high level
conceptual directives and are organized into a sequence by using the STRIPS paradigm for planning [6]. Briefly,
goals are distributed in a logical sequence from an initial goal to a final one with preconditions and postconditions,
but are not scheduled unless the time is explicitly part of a goal (e.g., reach a given location in a given time). The
sequence can be adjusted during execution and is qualified according to the total level of interest of all the goals.
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The definition of a pool of high level directives limits the set of goals to those for which the autonomous system was
designed but avoids the persistency of unreachable goals.

Previous attempts to model vague concepts such as interest or curiosity for autonomous agents can be found
in the work of Schmidhuber [7], who proposed the use of a co-evolutionary algorithm to evolve curiosity in an
artificial intelligence system. In this case, however, there is no specific use of instruments or any mission-specific
measurements or data to support the decision-making process. Instead, in this paper, a full exploitation of scientific
data is proposed to build an interest map of the surroundings. Pieces of scientific data from different sources are fused
with navigation one to yield a single value for each point on the map. The map, then, evolves during the mission
depending on the available observations.

In general terms, data fusion is the use of independent and/or redundant ancillary data from various sources to
improve the data already available. Wald formally defined data fusion as “A formal framework in which are expressed
the means and tools for the alliance of data originating from different sources. It aims at obtaining information of
greater quality” [8]. Here we understand data fusion as a way to combined information from different sources to
obtain a single unambiguous value, useful to make decisions on the interest of a particular set of goals.

The combination of scientific and navigation data requires the fusion of pieces of information coming from
physically different sensors. Each sensor measures a different parameter, has its own characteristics, reliability and
uncertainty on measurements. Moreover, if each instrument is interpreted as a scientist expressing an opinion, we
can associate to each data set an interest level with associated uncertainty. This would mimic the process performed
on ground when a new set of scientific data is available. The data fusion process is then required to collect all the
different pieces of information, with associated uncertainty, and combine them together [9].

To fuse data from the sensors and find the most interesting areas of the surrounding environment, the Dezert–
Smarandache theory (DSmT) of plausible and paradoxical reasoning [10] was used. This theory has been successfully
applied to many engineering problems, such as the estimation of behavior tendencies of a target [11], or the prediction
of the land cover change [12]. In those works, it was proven that this modern theory overcomes the limitations of
both fuzzy logic and evidence theory.

The main advantage of the paradoxical reasoning is that it allows dealing simultaneously with uncertain and
paradoxical data from different sources, providing a solution even in the case of conflicting information. A conflict
leads to a nondecidable situation that would put the rover into idle mode, waiting for instructions. The conflict could
arise when different sources (different instruments) are assigning opposite interest values to the same area or when
the navigation expert suggests avoiding an area that has a high level of interest. Conflicts on the ground would be
resolved through a discussion among the scientists and the mission control team, leading to a new set of goals. An
autonomous resolution of conflicts by the rover, would reduce the time spent to wait for instructions from the ground
station.

In this paper, after a brief introduction to the theory of Plausible and Paradoxical Reasoning, the application
to modeling interest for the Wisdom system is explained. The way of modeling interest fusing information from
different sensors is described, and an application to a synthetic environment is shown. At the end, we will present
a brief discussion about the possible use of Dempster–Shafer theory for the assignment of an interest. It should be
noted that the key point of this work is not to propose a new theory of information fusion or to present the advantages
of one theory over another. The key point is to propose an innovative way to assign a value of interest to mission
goals for a planetary rover so that the goals can be autonomously adapted to contingent mission events.

II. Plausible and Paradoxical Reasoning
The theory of plausible and paradoxical reasoning (or DSmT [10]) is a generalisation of the Dempster–Shafer

evidence theory [13], which is in turn a generalisation of the classical probability. The foundation of the DSmT is
to abandon the rigid models of the previous theories, because for some fusion problems it is impossible to define or
characterize the problem in terms of well-defined and precise and exclusive elements.

Given an experiment, the frame of discernment � = {θ1, θ2, . . . , θn} is the set of all possible events. The model on
which the DSmT is based allows dealing with imprecise (or vague) notions and concepts between elements θi of the
frame of discernment �. The DSmT includes the possibility to deal with evidences arising from different sources of
information, which do not have access to absolute interpretation of the elements θi under consideration. This means
that some events may also be overlapped and/or not well defined.
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If � is the frame of discernment, we can define the space D�, called hyperpower set [14], as follows

Ø, θ1, . . . , θn ∈ D�;
∀A, B ∈ D�, (A ∪ B) ∈ D�, (A ∩ B) ∈ D�.

(1)

No other elements belong to D�, except those obtained by using rules in Eq. (1). Once D� is defined, we can apply
the map m (·) : D� → [0, 1], called general basic belief number, or gbba [10], such that

m
(
Ø

) = 0,

∑
A∈D�

m (A) = 1.

A set of gbba, referred to the same frame of discernment �, is called evidence.
This approach allows us to model any source that supports paradoxical (or intrinsically conflicting) information.

The theory of Dezert–Smarandache defines a rule of combination for intrinsically conflicting and/or uncertain inde-
pendent sources. If two experts give their opinions in terms of bodies of evidence m1 and m2, their combination is
given by

m12(A) =
∑

B,C∈D�

B∩C=A

m1(B)m2(C), ∀A ∈ D�. (2)

Note that this rule is commutative and associative and requires no normalization procedure. Moreover, it can man-
age the paradoxical information without any other assumption, thus overtaking some limitations of other probability
theories, such as the evidence theory, in which the frame of discernment shall be based on a set of exhaustive and
exclusive elements.

All the pieces of evidence in Eq. (2) are then used to give two uncertainty values: the belief and the plausibility

Bel(A) =
∑

B∈D�|B⊆A

m(B);

P l(A) =
∑

B∈D�|B∩A 
=Ø

m(B).

(3)

The belief of an event A is the sum of all the prepositions that totally agree with event A, while plausibility sums
up all the prepositions that agree with A totally or partially. An estimation through classical probability theory would
fall in the interval defined by the values of belief and plausibility.

III. Modeling Interest for a Planetary Rover
The high level of autonomy required by a planetary rover demands the ability to choose the mission goals, without

human intervention, once high level mission objectives are defined to maximize the scientific return of the mission.
These objectives, such as “look for water” or “look for traces of life”, do not identify exactly where to go and which
experiments to perform. The rover should be able to uniquely define what is interesting, by means of the information
gathered during the mission, and make decisions without waiting for instructions from the ground station. The
collected pieces of information can be incomplete and uncertain. In particular, the Wisdom system uses different
sensors to obtain the pieces of evidence required to make a decision. Each instrument plays the role of a scientist or
of a ground control specialist. DSmT is used to model the following situation: each scientist (or specialist) expresses
an opinion on the interest of a given object or portion of the surrounding area; the scientist admits no uncertainty
but the one that comes from the instruments. On the other hand, every scientist leaves some margin for discussion,
accepting the existence of opposite opinions.
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A. Modeling of Sensor Information
Nausicaa, the rover used to test the Wisdom system, is equipped with an infrared camera (the scientific payload)

and two optical navigation cameras that give a stereographic view of the surrounding environment (the navigation
module). The optical stereo images are used to generate an elevation map of the ground (called Digital Elevation
Map or DEM). The DEM is a matrix containing the height of the corresponding point on the ground.

The DEM can be a partial reconstruction of the surroundings. Some parts of the terrain may not be in sight,
because they are hidden by other parts (e.g. rocks or hills), and thus it is not possible to have any information about
them. Furthermore, the algorithm can fail to determine the height of some points, especially if the image quality is
poor. For these reasons, a second matrix is stored together with the DEM: it contains the uncertainty on the elevation
of each point in the DEM. Values are between 0 and 1, where the former means total certainty on the elevation.

Besides giving information on the elevation of the ground, optical images provide information on the texture of
objects and surfaces. A texture map is then created by associating to each point in view an integer value identifying
a specific material. As this information might not be accurate or the image could be poor, a map of uncertainty is
associated to the texture map.

The payload mounted on Nausicaa generates a thermal map of the environment. This map is analogous to the
DEM, but contains the temperature of each visible point. An uncertainty map is then associated to the thermal map,
to take into account partial information owing to occultation or the measurement noise of the infrared sensor. The
final step consists of fusing the data of the three maps, to generate a single one: the interest map.

B. Definition of the Interest Map
The interest map is a matrix in which each element represents the belief that a particular spot on the ground is

interesting. A frame of discernment � = {I, NI} was defined, where I is the hypothesis interesting and NI is the
hypothesis not-interesting. Interest is a vague concept and is subjective in nature. The associated hyperpower set is
defined as D� = {

Ø, I, NI, I ∪ NI, I ∩ NI
}
, and gbbas are assigned to the interesting and not interesting hypotheses,

but also to:
a) I ∪ NI: uncertain hypothesis. Represents the amount of ignorance, or the lack of knowledge of the expert

which is dealing with the gbba assignment. The expert assigns evidence to this hypothesis when the
uncertainty on the data is high, owing for example to distance, error on the sensor, or even lack of data.

b) I ∩ NI: paradoxical hypothesis. This is the case in which two distinct scientists disagree on the interest level
of a particular area. One of the scientists, according to the readings of his instruments, assigns a very high
gbba to the interesting hypothesis while the other assigns a very high gbba to the not interesting hypothesis.

Note that in the classical probability theory, these two additional hypotheses do not exist. Furthermore, the
difference between the uncertain and the paradoxical cases is that the former expresses uncertainty owing to lack
of knowledge or information, while the latter does not claim any ignorance, but the possibility that both hypotheses
could be true at the same time.

As a consequence, the two associated hypotheses are vague, can be overlapped, and cannot be considered as
mutually exclusive. The various pieces of information can be conflicting and highly uncertain. These types of
information can be effectively handled through DSmT as it can manage conflicts among various experts and provides
a single rule of combination.

The interest map is created point by point, by fusing all the available pieces of information (or evidence that a
point is interesting or not) about each one of the maps as summarized in Fig. 1. A set of independent experts (the
instruments) creates the bodies of evidence that will be fused. For each point on the map the expert has to express
an opinion on whether the point is interesting or not based on some evidence. The opinion is expressed by assigning
gbba to each point on the map. The evidence comes form the readings of the navigation and scientific instruments.
In particular, three experts were created, one for each map. The gbba that each expert assigns to a point on the map
depends on the scientific objectives of the mission and on the available measurements. The measured values are
compared against the values in a reference look-up table (the tables for the three experts can be found in Table 1 to
Table 3). For example, in this work, we assume that the expert associated to the DEM is interested in sharp edges
and in the lateral surface of the rocks as they are easily accessible. Thus, it assigns more gbba to the interesting case
and less to the not interesting case, when the value of the gradient of the DEM is high, and vice-versa (Table 1). In
addition, for some values of the gradient, gbba is also assigned to the paradoxical case. This is done not because of
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Fig. 1 Diagram of the procedure to create the interest map.

lack of knowledge of the roughness of the terrain (in which case, gbba is assigned to the uncertain hypothesis), but
because the value of the gradient alone would not be sufficient to completely define whether an area is interesting or
not. Assigning gbba to the paradoxical case allows for the integration of the opinions of other experts even if they
are conflicting with the one of the DEM expert.

In the same way, the temperature expert assigns interest to some temperatures (Table 2), and the texture expert
assigns interest to some specific textures (Table 3).As before, gbba is assigned to the paradoxical hypothesis when the
values associated to temperature and texture cannot be used to completely establish whether the point is interesting
or not.
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Table 1 Table for the DEM expert. Nondimensional units have
been used

Modulus of the gradient
of the DEM m(I ∩ NI) m(NI) m(I)

[0, 1) 0.20 0.80 0
[1, 3) 0.30 0.60 0.10
[3, 5) 0.10 0.10 0.80
[5, 7) 0.15 0.05 0.80
[7, 9) 0.05 0.05 0.90
[9, +∞) 0.05 0 0.95

Table 2 Table for the temperature map expert. Nondimen-
sional units have been used

Temperature m(I ∩ NI) m(NI) m(I)

[0, 20) 0.20 0.80 0
[20, 40) 0.40 0.50 0.10
[40, 60) 0.05 0 0.95
[60, 80) 0.15 0.05 0.80
[80, 100) 0.05 0.05 0.90

Table 3 Table for the texture expert

Texture m(I ∩ NI) m(NI) m(I)

Texture not in database 0.20 0.80 0
1 0.30 0.60 0.10
2 0.10 0.10 0.80
3 0.15 0.05 0.80
4 0.05 0 0.95

At first no gbba is assigned to the uncertain hypothesis I ∪ NI; subsequently, each expert redistributes part of
the basic probability associated to the hypothesis I ∩ NI, NI, I to the hypothesis I ∪ NI. The gbba are redistributed
proportionally to the value u of the corresponding uncertainty map associated to each expert map, by using the
following classical discounting procedure

δ(i) ← m(i) · u

m(i) ← m(i) − δ(i)

m(I ∪ NI) ← m(I ∪ NI) + δ(i)

⎫⎬
⎭ i = I ∩ NI, NI, I (4)

The value of u depends on the characteristics of the sensor (e.g., measurement errors) In this work, uncertainty
maps will be simulated to provide a variety of test cases for the data fusion process. Therefore, the value of u will not be
chosen to reproduce the actual measurements but just to test the proposed methodology. Note that, if the instruments
are ideal and no uncertainty in their measurements is present, no mass is assigned to the hypothesis I ∪ NI.

The assignment process presented in Eq. (4) is applied to each point on the DEM. Given the three sets of evidence
by each expert, the general combination rule for paradoxical sources of DSmT is applied, and the combined evidence
is computed. The following step is to compute the belief in the hypothesis interesting, Bel(I ). This value gives a
pessimistic estimation (lower boundary) of the probability of that point to be actually interesting. Therefore, the
interest map will contain, for each point on the DEM, the belief that point is interesting, according to the high level
mission goals. The planner will then give more importance to those areas that are more likely to be interesting, and
will reallocate the goals to maximise the cumulative value of interest with the highest reliability.

In the following section we will present how each maps are generated and how the belief is computed for a specific
test case.
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IV. Simulation
The proposed approach was initially tested in a simulated environment. A synthetic landscape was generated

inserting typical features like rocks with different textures and slopes with different gradients. The algorithm was
run simulating the behavior of the two navigation and the infrared cameras mounted on Nausicaa.

The aim of this sample test case was to generate an interest map that was consistent with the simulated features.
The result was then used by the planner [5] to generate a set of mission goals to visit only the spots that are considered
to be the most rewarding in terms of science.

The synthetic landscape, represented in Fig. 2, was converted into a DEM. The x–y plane in the figure represents an
ideal horizontal plane, while z is the elevation of each point of the terrain with respect to this plane. Nondimensional
units for length and temperatures have been used. Assuming that the rover is in the center of the map, and the height
of the camera from the ground is 40 units, it has been possible to calculate whether each point of the map was in
sight of the camera or not (Fig. 3).

As explained above, the module that generates the DEM also provides an uncertainty map based on visibility (partial
information about the landscape) and on the intrinsic measurement errors of the digital cameras. The uncertainty
map is initially created with values of zero (point in sight, no uncertainty on its elevation) or one (hidden point,
no information about its elevation). Then, the uncertainty owing to errors of recognition of the disparity maps are
simulated by introducing a noise component, with a value in the interval [0, 0.2]. The resulting uncertainty map is
represented in Fig. 4.

The expert that creates the evidence from the DEM first computes the map of the gradient of the terrain, starting
from its elevation; then, it assigns high interest to the points which have a high gradient, and low interest to other
points (Table 1). In Fig. 5 there is a representation of the absolute value of the gradient of the DEM, as computed by
the corresponding expert.

The virtual infrared map contains the temperature of the corresponding point on the DEM. The expert associated
with the infrared camera assigns high levels of interest to hot areas. Figure 6, shows the temperature distribution
in the virtual environment: the whole terrain as an average temperature below 5 (in the nondimensional units of
temperature) which correspond to a cold terrain, apart from single circular hot area.

The texture distribution is represented in Fig. 7: four different patterns have been considered, each one correspond-
ing to one color in the figure. The reference textures with their associated level of interest are stored in a database

Fig. 2 DEM of the synthetic landscape. Bumped features represent rocks.
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Fig. 3 Visibility map superimposed on the DEM. Surfaces that are not in sight are shown in dark gray. The camera
is in the middle of the map, at a height of 40 units from the ground.

Fig. 4 The uncertainty map associated with the DEM.

onboard. The expert of this map assigns the gbba according to the reference values in Table 3: it was assumed texture
4 (colored in brown in Fig. 7) has the a greatest probability to be interesting for this particular mission.

The experts associated with the texture and infrared maps generate the corresponding uncertainty maps in a similar
fashion as the expert of the DEM: they check for visibility of each point and surface in the map. In fact, if the infrared
image and optical image are captured simultaneously, without moving the rover, the unknown areas must be the
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Fig. 5 Representation of the absolute value of the gradient of the DEM.

Fig. 6 The infrared map.

same. However, this yields the same level of uncertainty for the same points on all the three maps. Therefore, it was
assumed that the uncertainties for the infrared map grows linearly from the bottom end of the map to the upper end of
the map, while the uncertainty on the texture grows linearly from the right end to the left end of the map, as shown in
Fig. 8. Note that this assumption has no particular physical meaning, but it allows us to have areas with very different

101



CERIOTTI ET AL.

Fig. 7 The texture map: each color is associated to a different texture in the database.

Fig. 8 The uncertainty associated a) to the infrared map and b) to the texture map.

and mixed levels of uncertainties, thus testing properly the proposed data fusion framework. A different distribution
of uncertainty, although producing different values, does not change the significance of the results presented in this
paper. As stated above, in a real case, the uncertainty map would depend on the properties of the instruments and on
the level of confidence of the scientists in their own judgment.

Given the maps and the experts, the result of the fusion process, as explained in par. III.B, is the interest map
shown in Fig. 9. The value associated to each point in the map represents the belief that the point is interesting.

The areas identified by the lettersA, B, C, D, E, F, G, H, and I in Fig. 9, corresponding to rock borders, are marked as
very interesting because of the high gradient value. It shall be noted that only the parts in sight of the cameras are inter-
esting (this is particularly noticeable in the case of spots B, C, D, and G). Where the rock is hidden, the gradient is high,
but its unreliability is high, as well; thus, the assignment from the expert is uncertain and the associated belief is low.
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Fig. 9 Interest map: different colors represent different values of Bel(I).

The circular area identified with letter L is considered interesting mainly by the expert of the infrared map but its
visibility is high as well as its reliability. In fact, Fig. 6 shows that the temperature is high in that area and Fig. 8a
shows that for that area, the infrared map has a low uncertainty value; thus the information it gives is considered to
be very reliable.

The small area with letter M is the most interesting of the whole map, with a value close to one. This is owing
to the synergy between the DEM and the infrared experts: both have certain information, and the gradient and the
temperature are very high.

The sudden change in the level of interest on area N is a consequence of the discontinuity of the soil texture, as
can be seen in Fig. 7. Looking at the map, starting from the area N, and moving right, the degree of interest gradually
decreases: this is because the texture information is gradually less reliable on the right part of the map, as can be seen
in Fig. 8b. Notice how both the infrared and the DEM expert regarded this area as not interesting but both the DEM
and the texture experts stated that the reliability of what observed was good while the infrared stated the opposite.
Nonetheless, the fused reliability of the texture and of the DEM maps supports the hypothesis that this area is worth
a visit and is safe enough; as a consequence the associated belief is moderately high. Finally a three dimensional
representation of the interest map superimposed onto the DEM can be seen in Fig. 10.

V. On the Use of DST for the Generation of the Interest Map
The DSmT can be considered as an extension of the Dempster–Shafer Theory of Evidence (DST), from which it

was derived. In fact, the DST is a particular case of the DSmT in which all the sets of a given frame of discernment
are disjointed (i.e., ∀A, B ∈ �, A 
= B → A ∩ B = Ø). As a consequence, the set of possible hypotheses for a
frame of discernment � = {θ1, θ2} is its power set 2� = {

Ø, A, B, A ∪ B
}
. As for the DSmT, we have m

(
Ø

) = 0
and

∑
A∈2� m (A) = 1. In literature, the function m (·) is generally called basic probability assignment (bpa), when

referred to the DST framework.
There are several different rules for combining bodies of evidence from different experts under this framework.

The classical Dempster rule, which is associative and commutative, fuses the bpa m1 and m2 of two experts referred
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Fig. 10 Interest map superimposed on the DEM.

to the same frame of discernment in the following way

m12(A) =

∑
B,C∈2�

B∩C=A

m1(B)m2(C)

1 − ∑
B,C∈2�

B∩C=Ø

m1(B)m2(C)
, ∀A ∈ 2� (5)

The Belief and Plausibility functions are computed in the same way as in the DSmT, that is using (3), given that
the power set 2� shall be considered.

The different behavior of the two theories is evident when conflicting bpas are given by the experts. In particular,
the famous Zadeh’s example [10] highlights the counter-intuitive results which the DST can lead to, while the DSmT
is able to solve the contradiction in the sources of information quite easily, thank to the presence of the paradoxical
hypothesis.

A simple case that brings to quite different results is when the assignments of two different sources are given, as
in Table 4. In this case, the evidence of the two experts is almost totally conflicting, with a small uncertainty: this
situation can happen, for example, when the terrain is flat (then not interesting for the DEM expert) but the texture
is very interesting.

The fusion through the DST, according to Eq. (5), leads to the combined bpa shown in the first column of Table 5.
The DST combination rule assigns the same amount of evidence to both the hypotheses I and NI. In this framework,
the value of Bel(I ) is the same as m(I). In essence, the DST states that the point has the same probability of being
interesting or not interesting, which does not allows the rover to take a decision on whether to investigate that point

Table 4 Example of conflicting bodies of evi-
dence for two different experts

Expert 1 Expert 2

mi(I) 0.99 0
mi(NI) 0 0.99
mi(I ∪ NI) 0.01 0.01
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Table 5 Combined evidence and Belief according to DST and
DSmT, for evidence provided by the two experts in Table 4

DST DSmT

m12(I ) 0.4975 0.0099
m12(NI) 0.4975 0.0099
m12(I ∪ NI) 0.005 0.0001
m12(I ∩ NI) — 0.9801
Bel(I ) 0.4975 0.99

or not. On the other hand, the DSmT assigns most of the evidence to the paradoxical hypothesis I ∩ NI, which is
contributing in the value of Bel(I ).

To show the different results in fusing the data using either the DST or the DSmT, let us consider the border of the
rock D. As an example, we take the point (67, 20): for this point, we have the values for the gradient of DEM, texture
and temperature listed in Table 6, with corresponding uncertainties. According to these values, the consequent bpas
(or gbba) are also shown in the same table. The result of the combination through the DSmT is shown in Table 7. In
conclusion, according to the DSmT, the point should be highly interesting, as the belief of the I hypothesis is close
to one.

The use of the DST, instead, leads to a different result. The DST associative rule can be applied to the same
point, but considering that in the DST framework, all the sets are disjointed, so I ∩ NI = Ø, it would make no sense
to assign bpa to this case. We decided here to reassign the gbba of the hypothesis I ∩ NI to the hypothesis I ∪ NI
(shown in Table 8), as a conflict of opinions would lead to a stall in the decision-making process analogous to a lack
of information. Note that, for this case, a different choice of the bpa re-assignment would not change substantially
the result obtained with the DST.

Table 6 Values of the three maps at point (67, 20), uncertainties, and corresponding assignments made by
the experts

Value Uncertainty m(I ∩ NI) m(NI) m(I) m(I ∪ NI)

Gradient of the DEM 6.088 0 0.15 0.05 0.8 0
Texture 4 0.66 0.017 0 0.323 0.66
Temperature 10.23 0.19 0.162 0.648 0 0.19

Table 7 Combined evidence and belief using
the DSmT combination rule, for bodies of
evidence given in Table 6

Combined evidence

m(I ∩ NI) 0.822 930 04
m(NI) 0.027 654 00
m(I) 0.149 416 00
m(I ∪ NI) 0
Bel(I ) 0.972 346 07

Table 8 Re-assignment of the gbba of the paradoxical hypothesis to
the uncertain hypothesis

m(NI) m(I) m(I ∪ NI)

Gradient of DEM 0.05 0.8 0 + 0.15
Texture 0 0.323 0.66 + 0.017
Temperature 0.648 0 0.19 + 0.162
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Table 9 Combined evidence and belief using
the Dempster combination rule, for bodies of
evidence given in Table 8

Combined evidence

m(NI) 0.2296
m(I) 0.6881
m(I ∪ NI) 0.0824
Bel(I ) 0.6881

Applying the DST combination rule, we obtain the evidence in Table 9. Then we can state that, using the DST,
the belief in the interesting hypothesis is significantly lower than for the DSmT. The border of the rock will not be a
primary objective to analyze for the rover in this case.

If the frame of discernment is refined in the following way �ref = {I ∩ NI, I/(I ∩ NI), NI/(I ∩ NI)} then we can
apply DST and obtain a result equivalent to that computed using DSmT. Given the new refined frame of discernment,
the power set is

2�ref = {
Ø, X, Y, Z, X ∪ Y, X ∪ Z, Y ∪ Z, X ∪ Y ∪ Z

}

where

X = I ∩ NI

Y = I ∪ (I ∩ NI)

Z = NI ∪ (I ∩ NI)

Let us denote with prime the bpas referred to the refined frame of discernment. If we assign the bpas for each
generic expert i in the following way

m′
i (X) = mi(I ∩ NI)

m′
i (X ∪ Y ) = mi(I )

m′
i (X ∪ Z) = mi(NI)

m′
i (X ∪ Y ∪ Z) = mi(I ∪ NI)

m′
i (A ∈ 2�ref , A 
= X, X ∪ Y, X ∪ Z, X ∪ Y ∪ Z) = 0

(6)

and the DST combination rule (5) is applied, we have

1 −
∑

B,C∈2�ref

B∩C=Ø

m′
1(B)m′

2(C) = 1 (7)

Computing the bpa, for example for m′
12(X), we obtain

m′
12(X) = m′

1(X)m′
2(X) + m′

1(X ∪ Y )m′
2(X ∪ Z) + m′

1(X ∪ Z)m′
2(X ∪ Y )

+ m′
1(X)m′

2(X ∪ Y ) + m′
1(X)m′

2(X ∪ Z) + m′
1(X)m′

2(X ∪ Y ∪ Z)

+ m′
1(X ∪ Y )m′

2(X) + m′
1(X ∪ Z)m′

2(X) + m′
1(X ∪ Y ∪ Z)m′

2(X)

(8)

On the other hand, applying the DSmT combination rule (2) to the standard frame � = {I, NI}, we obtain for
m12(I ∩ NI)

m12(I ∩ NI) = m1(I ∩ NI)m2(I ∩ NI) + m1(I )m2(NI) + m1(NI)m2(I )

+ m1(I ∩ NI)m2(I ) + m1(I ∩ NI)m2(NI) + m1(I ∩ NI)m2(I ∪ NI)

+ m1(I )m2(I ∩ NI) + m1(NI)m2(I ∩ NI) + m1(I ∪ NI)m2(I ∩ NI)

(9)
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Equations (8) and (9) are equivalent and return the same value. Therefore, the fusion obtained using the DST with
the refined frame of discernment, and the one obtained with the original model and DSmT are identical. The same
happens for m′

12(X ∪ Y ∪ Z), m′
12(X ∪ Z), m′

12(X).
Note that, the refinement of the frame of discernment would require a probability assignment to the hypotheses

I/(I ∩ NI) and NI/(I ∩ NI) that have little physical meaning and are not intuitive. Therefore, although DST can be
used to define the interest map, DSmT offers a more direct definition and treatment of the two hypotheses I and
NI without the need for an artificial redefinition of the frame of discernment. Furthermore, it should be noted that
DSmT allows the direct treatment of a case in which a source is totally sure about its assignment and, therefore,
cannot assign any probability to the hypothesis I ∪ NI. In this case assigning a probability to the hypothesis I ∩ NI
would correspond to allowing some room for discussion and opposite opinions as mentioned above.

VI. Conclusion
In this paper, an algorithm for the definition of the level of interest of mission goals for a planetary rover was

presented. By fusing navigation data and payload data (an infrared camera in this specific case), the rover was
endowed with the capability to autonomously assign a level of interest to mission goals. The interest level allows the
rover to prioritize, reallocate, and choose the most appropriate set of goals depending on contingent situations. The
modern theory of Plausible and Paradoxical Reasoning was used to generate an interest map by which the rover can
reallocate its goals autonomously to maximize the scientific return of the mission. The theory gives the possibility
of dealing with vague quantities, like the degree of interest of an object. In particular, the advantage of DSmT is the
possibility to directly assign a level of interest to hypothesis I and NI for each point of the DEM, leaving room for
potential disagreements among the scientists or between the scientists and the ground control team.

The results showed that the proposed approach is suitable to uniquely identify the interesting zones, given the
high level scientific goals of the mission. The goals can be easily modified or tuned, by changing the experts used
into the data fusion process.
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